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Abstract

Our aim is to help popularize accurate likelihood inference and show
some unconsidered aspects of its use, specifically for the generalized ex-
ponential distribution. This two-parameter distribution is similar to the
gamma and Weibull distributions, and presents itself as a good competi-
tor for analyzing lifetime (or skewed) data which have monotonic hazard
rate function. Since the median lifetime is usually of interest in survival
analysis, we also consider higher order inference for the quantiles of the
generalized exponential.
Key-words: modified likelihood root; skewed data; small sample; tan-
gent exponential model.

1 Introduction

The two-parameter generalized exponential distribution, also known as the exponen-
tiated exponential distribution, is obtained by simply exponentiating with a constant
the exponential distribution function,

F (y) = (1− e−σy)α, y, α, σ > 0. (1)

This gives the advantage of a more general risk function,

h(y) =
f(y)

1− F (y)
=
ασ(1− e−σy)α−1e−σy

1− (1− e−σy)α
, y, α, σ > 0. (2)

whose shape does not depend on the scale parameter σ, and limy→+∞ h(y) = σ.
For some fixed value of σ, the risk function is increasing if α > 1, decreasing if
0 < α < 1, and constant at σ when α = 1. The quantile function is

qp = F−1(p) = − 1

σ
log(1− p1/α), p ∈ [0, 1). (3)



We investigate the performance of some inference procedures for the parameters
of the generalized exponential when the sample is small. Large sample theory is often
applied to small samples with no second thoughts. As mentioned by Lozada-Can &
Davison (2012), “it is not widely appreciated that standard likelihood theory can be
readily improved and that the corresponding computations are relatively straightfor-
ward.” We use simulation to compare, in terms of bias and root mean square error,
different estimators for the shape and scale parameters. We consider maximum like-
lihood estimation, the method of moments, the method of L-moments, least squares
and percentile estimators. Even though maximum likelihood estimators have the
smallest possible asymptotic variances, the variance of the other estimators could
be smaller for small or moderate samples. So, the estimators different from maxi-
mum likelihood may have good small-sample properties, but they only yield point
estimates, not interval estimates, and they are not easy to extend to more complex
settings. We describe improved inference using maximum likelihood estimation in
the next section, whereas description of the other estimators can be found in Gupta
& Kundu (2007).

2 Higher order inference

The following discussion is based on the work of Brazzale et al. (2007), Brazzale & Davison
(2008) and Lozada-Can & Davison (2012). Given a random sample y = (y1, . . . , yn) from
a model with density function f(y; θ), where θ ∈ Θ ⊆ Rd is a d-dimensional parameter,
our interest relies on improved inference for one of the components of θ based on the log
likelihood l(θ) = log f(y; θ). Let θ = (ψ, λ), where ψ is the scalar interest parameter,
and λ the possibly vector nuisance parameter. Under standard regularity conditions, the
distribution of the maximum likelihood estimator, θ̂ = (ψ̂, λ̂), converges to a standard
normal distribution with mean θ and variance j(θ̂)−1, where j(θ) = −∂2l(θ)/∂θ∂θᵀ is the
observed information function. The Wald statistic, t(θ) = j(θ)1/2(θ̂ − θ), is commonly
used to test hypothesis and build confidence intervals on θ. However, the distribution
of the estimator may not be symmetric for small samples, and so resulting confidence
intervals tend to be nonsensical. An alternative is based on the likelihood root statistic.
Let θ̂ψ = (ψ, λ̂ψ) denote the maximum likelihood estimator when ψ is held fixed, and let

lp(ψ) = l(θ̂ψ) be the profile log likelihood for ψ. The likelihood root,

r(ψ) = sign(ψ̂ − ψ)
[
2
{
lp(ψ̂)− lp(ψ)

}]1/2
,

also has an asymptotic standard normal distribution, but it accounts for potential asym-
metry of the log likelihood. (The χ2

1 approximation to the likelihood ratio statistic,
w(ψ) = r2(ψ), is more familiar.) Furthermore, apart from a possible sign change, r(ψ)
is invariant to interest-respecting reparameterizations. Nonetheless, the approximation to
the distribution of both statistics, t(ψ) and r(ψ), is based on the central limit theorem
and typically have an error of order n−1/2. In practice, for small samples, the normal
approximation to r(ψ) might be biased, and the approximation to t(ψ) completely off.
Improved likelihood inferences may be based on the modified likelihood root

r∗(ψ) = r(ψ) +
1

q(ψ)
log

{
q(ψ)

r(ψ)

}
, (4)



where q(ψ) is defined to be an approximate pivot, such that the modified likelihood root
incorporates not only an improved approximation, but also an adjustment for the elimi-
nation of nuisance parameters. When the log likelihood is not of the exponential family
form, one can use the tangent exponential model (Fraser & Reid, 2001) to obtain

q(ψ) =

∣∣φ(θ̂)− φ(θ̂ψ) φλ(θ̂ψ)
∣∣∣∣∣φθ(θ̂)∣∣∣
∣∣∣j(θ̂)∣∣∣1/2∣∣∣jλλ(θ̂ψ)

∣∣∣1/2 , (5)

where φ(θ) is the canonical parameter, φθ and φλ denote the d× d and d× (d− 1) matrix
of partial derivatives, ∂φ/∂θᵀ and ∂φ/∂λᵀ. For a sample of independent observations, φ
is a sample space derivative of the log likelihood function, and it is defined as

φ(θ)ᵀ =
n∑
i=1

∂l(θ; y)

∂yi

∣∣∣
y=y0

Vi, (6)

where y0 denotes the observed data, and Vi is computed by differentiating yi with respect
to θ, for a fixed pivotal zi, which is always available through the probability integral trans-
formation F (yi; θ), although simpler alternatives may be available. So, we take derivatives
of the pivotal zi on the parameter space and on the sample space,

Vi =
dyi
dθᵀ

∣∣∣
θ=θ̂

= −
(
∂zi
∂yi

)−1( ∂zi
∂θᵀ

)∣∣∣
θ=θ̂

. (7)

Confidence intervals using the modified likelihood root, r∗(ψ), are obtained in a similar
fashion as using the likelihood root, r(ψ). The modified maximum likelihood estimate,
ψ̂∗, can be found by solving the equation r∗(ψ̂∗) = 0.

3 Partial results and discussion

We simulated 1,000 random samples from the generalized exponential distribution
for α = 0.5, 1, 1.5, 2, 2.5 and σ = 1. We reparametrized the model in terms of logα
and log σ, hoping to avoid numerical problems with the likelihood maximizations.
The simulation and computations were performed using the statistical software R
(R Core Team, 2016). For the tangent exponential model, we adapted function tem

in package hoa (Brazzale, 2005). In order to compare the different estimators for α,
we plot their bias and root mean square error according to sample size; see Figure
1. Although the least squares estimators have biases close to zero, only the modified
maximum likelihood estimator was able of effectively reducing the root mean square
error. In this study, we also compare the use of the Wald, lihelihood root, and
modified likelihood root statistics to compute confidence intervals for α, σ, and q0.5
(the median). For now, we have only simulated 1,000 samples, but our goal is to
simulate at least 10,000 samples for all five scenarios, so the results are smoother.
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Figura 1: Animated figure (use the buttons or click on the buttom)! Bias (left) and
root mean square error (RMSE – right) of the different estimators for α: the usual
maximum likelihood estimator, α̂; the moments estimator, α̂MM ; the L-moment es-
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estimator, α̂WLS; and percentiles estimator, α̂P .
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